将通过二叉链表实现的表达式二叉树进行输出,同时计算出结果。
要求:
1)二叉树建立时,使用先序建立;
2)四个运算符包括:+, -, *, /;
3 ) 在输出时,遇到优先级问题时,相应的括号也要输出。
提示:
1)递归执行下列步骤即可求值:先分别求出左子树和右子树表示的子表达式的值,最后根据根结点的运算符的要求,计算出表达式的最后结果。
2)二叉树的中序遍历序列与原算术表达式基本相同,但是需要将中序序列加上括号,即当根结点运算符优先级高于左子树(或右子树)根结点运算符时,就需要加括号。

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
| #include "cstdio" #include <cmath> #include <iostream> #include <stdio.h> using namespace std; class Tree; class TreeNode { friend class Tree;
private: char data; TreeNode *left; TreeNode *right;
public: TreeNode() : left(NULL), right(NULL){}; TreeNode(char data1) : data(data1), left(NULL), right(NULL) {} }; class Tree { private: TreeNode *root; char endtag; void createTree(TreeNode *&subtree); void destroy(TreeNode *&subtree); void inorder(TreeNode *subtree); int operator1(TreeNode *subtree);
public: Tree() { root = NULL; } Tree(char end1, TreeNode *p = NULL) : root(p), endtag(end1) {} bool isEmpty() { return root == NULL ? true : false; } void createTree() { createTree(root); } void inorder() { inorder(root); } int operator1() { return operator1(root); } bool see(char op1, char op2); };
void Tree::createTree(TreeNode *&subtree) { char item; cin >> item; if (item != endtag) { subtree = new TreeNode(item); createTree(subtree->left); createTree(subtree->right); } }
void Tree::destroy(TreeNode *&subtree) { if (subtree != NULL) { destroy(subtree->left); destroy(subtree->right); delete subtree; } }
void Tree::inorder(TreeNode *subtree) { if (subtree != NULL) { if (subtree->right != NULL && see(subtree->data, subtree->right->data)) { inorder(subtree->left); cout << subtree->data; cout << '('; inorder(subtree->right); cout << ')'; } else { inorder(subtree->left); cout << subtree->data; inorder(subtree->right); } } }
int Tree::operator1(TreeNode *subtree) { if (subtree != NULL) { switch (subtree->data) { case '+': return operator1(subtree->left) + operator1(subtree->right); break; case '-': return operator1(subtree->left) - operator1(subtree->right); break; case '*': return operator1(subtree->left) * operator1(subtree->right); break; case '/': return operator1(subtree->left) / operator1(subtree->right); break; default: return int(subtree->data - '0'); break; } } else return 0; }
bool Tree::see(char op1, char op2) { if ((op1 == '*' op1 == '/') && (op2 == '+' op2 == '-')) return true; else return false; }
int main() { Tree tree('@'); tree.createTree(); tree.inorder(); cout << '=' << tree.operator1() << endl; return 0; }
|