表达式的三种表示方法
设 Exp = S1 OP S2
- OP S1 S2 为前缀表示法
- S1 OP S2 为中缀表示法
- S1 S2 OP 为后缀表示法
前缀式的运算规则为:
连续出现的两个操作数和在它们之前且紧靠它们的一个运算符构成一个最小表达式;
后缀式的运算规则为:
连续出现的两个操作数和在它们之后且紧靠它们的一个运算符构成一个最小表达式;
利用栈从后缀式求值
原理:遇到运算数则入栈,遇到操作符则出栈2个数,计算,结果入栈
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
| #include <iostream>
using namespace std; class steak; class StackNode { friend class LinkedStack;
public: StackNode* link; double data;
public: StackNode(StackNode* ptr = NULL) { link = ptr; } StackNode(double& c, StackNode* ptr = NULL) { data = c; link = ptr; } }; class LinkedStack { public: StackNode* top; public: LinkedStack();
void Push(double& ch); int Pop(double& ch); void makeEmpty(); int IsEmpty() { return (top == NULL) ? 1 : 0; } }; LinkedStack::LinkedStack() { top = NULL; } void LinkedStack::makeEmpty() { if (top != NULL) { StackNode* p = top->link; while (top != NULL) { p = top; top = top->link; delete p; } } } void LinkedStack::Push(double& ch) { top = new StackNode(ch, top); }
int LinkedStack::Pop(double& ch) { if (IsEmpty()) return 0; StackNode* p = top; top = top->link; ch = p->data; delete p; return 1; }
class Calculator { public: Calculator() {}; void Run(); void Clear();
private: LinkedStack S; void AddOperand(double value); int Get2Operands(double& left, double& right); void DoOperator(char op); }; void Calculator::AddOperand(double value) { S.Push(value); }; void Calculator::Clear() { S.makeEmpty(); }; int Calculator::Get2Operands(double& left, double& right) { if (S.IsEmpty()) { cout << "缺少右操作数!" << endl; return 0; } S.Pop(right); if (S.IsEmpty()) { cout << "缺少左操作数!" << endl; return 0; } S.Pop(left); return 1; }; void Calculator::Run() { char ch; double newoperand; while (cin>>ch, ch != '#') { if (ch != ' ') { if (ch == '+' ch == '-' ch == '*' ch == '/') { DoOperator(ch); } else { cin.putback(ch); cin >> newoperand; AddOperand(newoperand); } } } S.Pop(newoperand); cout << newoperand; }; void Calculator::DoOperator(char op) { double left, right, value; if (Get2Operands(left, right)) { if (op == '+') { value = left + right; S.Push(value); } else if (op == '-') { value = left - right; S.Push(value); } else if (op == '*') { value = left * right; S.Push(value); } else { if (right == 0.0) { cerr << "Divide by 0 !" << endl; Clear(); } else { value = left / right; S.Push(value); } } } else Clear(); }; int main() { Calculator CALC; CALC.Run(); return 0; }
|