原理:
使用两个栈操作符栈OPTR (operator),操作数栈OPND(operand),为了实现这种计算,需要考虑各操作符的优先级

代码思路:
- 建立并初始化OPTR栈和OPND栈,然后在OPTR栈中压入一个“#”
- 扫描中缀表达式,取一字符送入ch。
- 当ch != ‘#’ 或OPTR栈的栈顶 != ‘#’时, 执行以下工作, 否则结束算法。在OPND栈的栈顶得到运算结果。
循环过程:
- 若ch是操作数,进OPND栈,读下一字符到ch;
- 若ch是操作符,比较icp(ch)的优先级和isp(OPTR)的优先级:
- 若icp(ch) > isp(OPTR),则ch进OPTR栈,读下一字符到ch;
- 若icp(ch) < isp(OPTR),则从OPND栈退出a2和a1,从OPTR栈退出θ, 形成运算指令 (a1)θ(a2),结果进OPND栈,不读入下一字符而是继续比较栈顶元素;
- 若icp(ch) == isp(OPTR) 且ch == ‘)’,则从OPTR栈退出’(‘,对消括号,然后从中缀表达式取下一字符送入ch;
代码实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
| #include <iostream>
using namespace std; class LinkedStack; class LinkedStack2; class StackNode { friend class LinkedStack;
public: StackNode *link; char data; float data2;
public: StackNode(StackNode *ptr = NULL) { link = ptr; } StackNode(char &c, StackNode *ptr = NULL) { data = c; link = ptr; } StackNode(float &c, StackNode *ptr = NULL) { data2 = c; link = ptr; } }; class LinkedStack { public: StackNode *top; public: LinkedStack(); char getTop(char &ch); void Push(char &ch); int Pop(char &ch); float getTop(float &ch); void Push(float &ch); int Pop(float &ch); void makeEmpty(); int IsEmpty() { return (top == NULL) ? 1 : 0; } }; LinkedStack::LinkedStack() { top = NULL; } char LinkedStack::getTop(char &ch) { ch = top->data; return ch; } float LinkedStack::getTop(float &ch) { ch = top->data2; return ch; } void LinkedStack::makeEmpty() { if (top != NULL) { StackNode *p = top->link; while (top != NULL) { p = top; top = top->link; delete p; } } } void LinkedStack::Push(char &ch) { top = new StackNode(ch, top); } void LinkedStack::Push(float &ch) { top = new StackNode(ch, top); } int LinkedStack::Pop(char &ch) { if (IsEmpty()) return 0; StackNode *p = top; top = top->link; ch = p->data; delete p; return 1; } int LinkedStack::Pop(float &ch) { if (IsEmpty()) return 0; StackNode *p = top; top = top->link; ch = p->data2; delete p; return 1; }
int isp(char &c) { if (c == '#') { return 0; } else if (c == '(') { return 1; } else if (c == ')') { return 6; } else if (c == '+' c == '-') { return 3; } else { return 5; } } int icp(char &c) { if (c == '#') { return 0; } else if (c == '(') { return 6; } else if (c == ')') { return 1; } else if (c == '+' c == '-') { return 2; } else { return 4; } } void Calculator() { LinkedStack OPTR,OPND; float ch2; char ch = '#', ch1, op; OPTR.Push(ch); cin.get(ch); while (ch != '#' OPTR.getTop(ch1) != '#') { if (isdigit(ch)) { cin.putback(ch); cin >> ch2; cin.get(ch); OPND.Push(ch2); } else { OPTR.getTop(ch1); if (icp(ch) > isp(ch1)) {
OPTR.Push(ch); cin.get(ch); } else if (icp(ch) < isp(ch1)) { float right, left, value; OPTR.Pop(op); OPND.Pop(right); OPND.Pop(left); if (op == '+') { value = left + right; OPND.Push(value); } else if (op == '-') { value = left - right; OPND.Push(value); } else if (op == '*') { value = left * right; OPND.Push(value); } else { if (right == 0.0) { cerr << "Divide by 0 !" << endl; ch = '#'; OPTR.Push(ch); } else { value = left / right; OPND.Push(value); } } } else { if (ch == ')') { OPTR.Pop(op); cin.get(ch); } } } } float result; OPND.getTop(result); cout << result; } int main() { Calculator(); return 0; }
|